Crystal Structure

Communications

Triazidocobalt(III) complexes with tridentate amine ligands

Hyungphil Chun and Ivan Bernal*
Department of Chemistry, University of Houston, Houston, TX 77204-5641, USA Correspondence e-mail: ibernal@uh.edu

Received 11 July 2000
Accepted 29 August 2000
The title compounds, [N-(2-aminoethyl)-1,3-propanediamine$\left.\kappa^{3} N\right]$ triazidocobalt(III), $\quad\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right]$, [N-(2-amino-ethyl)- N-methyl-1,3-propanediamine- $\left.\kappa^{3} N\right]$ triazidocobalt(III), $\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~N}_{3}\right)\right]$, [N-(2-aminopropyl)-1,3-propanediam-ine- $\left.\kappa^{3} N\right]$ triazidocobalt $(\mathrm{III}),\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~N}_{3}\right)\right]$, and $[N-(2-$ aminopropyl)- N-methyl-1,3-propanediamine- $\kappa^{3} N$]triazidocobalt(III), $\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{~N}_{3}\right)\right]$, each consist of a $\mathrm{Co}^{\mathrm{III}}$ atom, three azide ligands in a meridional configuration and a tridentate amine ligand, namely aepn [N-(2-aminoethyl)-1,3-propanediamine] or dpt [N-(3-amino-propyl)-1,3-propanediamine], or their N-methylated analogs.

Comment

The title compounds, (I)-(IV) (Fig. 1), were studied as part of our investigation of the crystallization behavior of neutral $\mathrm{Co}^{\text {III }}$ complexes. Our specific point of interest was to prepare a series of compounds with similar molecular geometry and compare their molecular packing structures in order to discover whether intermolecular hydrogen bonding plays a role in their crystallization pathways. For example, both facial (Lukaszewski et al., 1976) and meridional (Druding \& Sancilio, 1974) isomers of $\mathrm{Co}($ dien $)\left(\mathrm{N}_{3}\right)_{3}$ (dien is diethylenetriamine) crystallize as typical racemates; however, a closely related compound, $\mathrm{Mn}(\operatorname{tacn})$ $\left(\mathrm{N}_{3}\right)_{3}$ (tacn is 1,4,7-triazacyclononane) (Wieghardt et al., 1987) has been known to crystallize as a conglomerate in space group

(I)

(III)

(II)

(IV)

Figure 1
ORTEPIII (Burnett \& Johnson, 1996) views of compounds (I)-(IV) showing the labeling of the non-H atoms. Displacement ellipsoids are drawn at probability levels of 50% for (I)-(III) and 40% for (IV).

Figure 2
Perspective view of the molecular packing of compound (III). Dashed lines represent hydrogen-bonded interactions. Carbon-bound H atoms have been omitted for clarity.
actions'. The packing structures of the other three compounds will not be discussed here since they can be understood in the same context as the above. Note that the tacn ligand of $\operatorname{Mn}(\operatorname{tacn})\left(\mathrm{N}_{3}\right)_{3}$ does not have a primary nitrogen with two H atoms available for hydrogen bonding.

The geometry of the coordinated azide groups in the four triazidocobalt(III) complexes are in good agreement with known values (Dori \& Ziolo, 1973). For example, the average distance between the middle and terminal nitrogens [1.140 (3)-1.165 (7) Å] of the azide groups are slightly shorter than the distance between the middle and metal-bound N atom $[1.182$ (2)-1.207 (6) \AA]. For the angular geometry, the $\mathrm{Co}-\mathrm{N}-\mathrm{N}$ angles are close to 120° with the exception of $\mathrm{Co}-$ $\mathrm{N} 6-\mathrm{N} 11$ of compound (III) [126.9 (2) ${ }^{\circ}$. The $\mathrm{N}-\mathrm{N}-\mathrm{N}$ angles fall between 175.5 (2) and 178.0 (2) ${ }^{\circ}$.

The three $\mathrm{Co}-\mathrm{N}$ distances associated with the chelating amine ligands are not quite uniform, with the $\mathrm{Co}-\mathrm{N} 1$ bond being the shortest and $\mathrm{Co}-\mathrm{N} 2$ being the longest in compounds (I), (II) and (IV). In most cases, the differences are statistically significant. Meanwhile, the differences in the three $\mathrm{Co}-\mathrm{N}$ distances involving the azide ligands are much smaller, with a maximum variation of $0.03 \AA$ in compound (III). The only notable deviation for the angular geometry around the Co atom is the angle $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 3$ of compound (III) $\left[168.96(8)^{\circ}\right]$, which is a consequence of forming two sixmembered chelate rings with the dpt ligand. In compound (IV), where the dpt ligand has an additional methyl group on its secondary nitrogen (N2), the same angle is $172.86(8)^{\circ}$ because the Co atom makes a longer bond to N 2 than in compound (III).

Experimental

Compounds (I), (II) and (IV) were prepared by conventional airoxidation of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in the presence of the corresponding amine ligand. NaN_{3} was added in portions during the aeration. Compound (III) was obtained by mixing NaN_{3} with $\mathrm{Co}(\mathrm{dpt}) \mathrm{Cl}_{3}$ (Barefield et al., 1980) in water. The Me-aepn ligand used in the preparation of (II) was synthesized by the reaction of 2-bromoethylamine hydrobromide with N-methyl-1,3-propanediamine in isopropyl alcohol. Single
crystals for data collection were obtained by recrystallization from water for (I), acetonitrile for (II) and (III), and acetone for (IV). Analysis found (calculated) for (I): C 19.35 (19.87), H 5.19 (5.00), N 55.06 (55.62) \%; (II): C 22.72 (22.79), H 5.35 (5.42), N 52.87 (53.15) \%; (III): C 22.55 (22.79), H 5.76 (5.42), N 52.62 (53.15)\%; (IV): C 24.81 (25.45), H 6.13 (5.81), N 50.59 (50.90)\%.

Compound (I)

Crystal data

$\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right]$
$M_{r}=302.22$
Monoclinic, $P 2_{1} / n$
$a=8.795$ (4) \AA
$b=15.958$ (5) A
$c=8.903$ (4) \AA
$\beta=106.78(5)^{\circ}$
$V=1196.4$ (9) \AA^{3}
$Z=4$
$D_{x}=1.678 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=6.47-15.10^{\circ}$
$\mu=1.442 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Brick, dark green
$0.49 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract-
1370 reflections with $I>2 \sigma(I)$ ometer
$R_{\text {int }}=0.042$
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(NRCVAX ABSORP; Gabe et al., 1989)
$T_{\text {min }}=0.456, T_{\text {max }}=0.771$
2494 measured reflections
2342 independent reflections
$\theta_{\text {max }}=26.00^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 19$
$l=0 \rightarrow 10$
3 standard reflections frequency: 240 min intensity decay: none

Refinement

Refinement on F^{2}
All H -atom parameters refined
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.125$
$S=1.139$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0891 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
2342 reflections
223 parameters
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.71 \mathrm{e}_{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\min }=-0.71 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$ for (I).

Co-N6	$1.943(4)$	N4-N7	$1.202(6)$
Co-N5	$1.954(4)$	N5-N9	$1.193(6)$
Co-N1	$1.955(5)$	N6-N11	$1.207(6)$
Co-N4	$1.963(4)$	N7-N8	$1.153(7)$
Co-N3	$1.970(5)$	N9-N10	$1.165(7)$
Co-N2	$1.971(4)$	N11-N12	$1.141(7)$
N6-Co-N5	$92.7(2)$	N9-N5-Co	$119.3(4)$
N6-Co-N4	$174.5(2)$	N11-N6-Co	$121.3(4)$
N5-Co-N4	$91.8(2)$	N8-N7-N4	$176.9(6)$
N1-Co-N3	$178.4(2)$	N10-N9-N5	$176.5(6)$
N5-Co-N2	$178.3(2)$	N12-N11-N6	$176.1(5)$
N7-N4-Co	$120.4(4)$		

Compound (II)

Crystal data

$\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~N}_{3}\right)\right]$
$D_{x}=1.616 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=316.25$
Monoclinic, $P 2_{1} / n$
$a=8.560$ (3) A
$b=9.404$ (2) \AA
$c=16.149$ (4) \AA
$\beta=91.65(3)^{\circ}$
$V=1299.5(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=8.14-12.65^{\circ}$
$\mu=1.331 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Brick, dark green
$0.50 \times 0.48 \times 0.21 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(NRCVAX ABSORP; Gabe et al., 1989)
$T_{\text {min }}=0.654, T_{\text {max }}=0.756$
2357 measured reflections
2278 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.057$
$S=1.118$
2278 reflections
240 parameters
All H -atom parameters refined

1851 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=24.97^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 11$
$l=0 \rightarrow 19$
3 standard reflections
frequency: 240 min
intensity decay: none

$$
\begin{aligned}
& \begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0364 P)^{2}\right. \\
&+0.0998 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=-0.009 \\
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{aligned}
\end{aligned}
$$

Table 3
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$) for (III).

Co-N6	$1.943(2)$	N4-N7	$1.196(2)$
Co-N3	$1.970(2)$	N5-N9	$1.196(3)$
Co-N5	$1.973(2)$	N6-N11	$1.182(2)$
Co-N4	$1.976(2)$	N7-N8	$1.155(2)$
Co-N1	$1.981(2)$	N9-N10	$1.145(3)$
Co-N2	$2.010(2)$	N11-N12	$1.160(3)$
N6-Co-N5	$89.37(8)$	N9-N5-Co	$118.57(14)$
N6-Co-N4	$179.40(8)$	N11-N6-Co	$126.9(2)$
N5-Co-N4	$91.16(8)$	N8-N7-N4	$178.0(2)$
N3-Co-N1	$168.96(8)$	N10-N9-N5	$176.6(2)$
N5-Co-N2	$178.20(8)$	N12-N11-N6	$176.5(2)$
N7-N4-Co	$119.82(14)$		

Compound (IV)

Crystal data
$\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{~N}_{3}\right)\right]$
$Z=2$
$M_{r}=330.27$
Triclinic, $P \overline{1}$
$a=8.848$ (5) A
$b=8.931$ (2) \AA
$c=9.606$ (3) \AA
$\alpha=105.98(2)^{\circ}$
$\beta=90.51(4)^{\circ}$
$\gamma=106.99(3)^{\circ}$
$V=694.6(5) \AA^{3}$
$D_{x}=1.579 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=8.41-13.54^{\circ}$
$\mu=1.249 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Polyhedra, dark green
$0.45 \times 0.38 \times 0.18 \mathrm{~mm}$
Data collection
Enraf-Nonius CAD-4 diffract- 2066 reflections with $I>2 \sigma(I)$
ometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(NRCVAX ABSORP; Gabe et al.,
1989)
$T_{\text {min }}=0.666, T_{\text {max }}=0.799$
2447 measured reflections
2447 independent reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0397 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$ $+0.1912 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.066$
$(\Delta / \sigma)_{\text {max }}=0.024$
2447 reflections
257 parameters
All H -atom parameters refined

Table 4
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (IV).

Co-N6	$1.951(2)$	N4-N7	$1.192(3)$
Co-N5	$1.958(2)$	N5-N9	$1.203(3)$
Co-N4	$1.974(2)$	N6-N11	$1.195(3)$
Co-N1	$1.976(2)$	N7-N8	$1.152(3)$
Co-N3	$1.982(2)$	N9-N10	$1.140(3)$
Co-N2	$2.083(2)$	N11-N12	$1.144(3)$
N6-Co-N5	$89.89(9)$	N9-N5-Co	$119.6(2)$
N6-Co-N4	$177.20(8)$	N11-N6-Co	$118.8(2)$
N5-Co-N4	$89.51(9)$	N8-N7-N4	$176.9(3)$
N1-Co-N3	$172.86(8)$	N10-N9-N5	$177.2(2)$
N5-Co-N2	$175.41(8)$	N12-N11-N6	$176.6(3)$
N7-N4-Co	$120.9(2)$		

Relatively large residual electron density found in the final difference map of (I) was ignored since it was too close to the Co atom $(<1.0 \AA)$. The $\mathrm{N}-\mathrm{H}$ distances are in the range 0.75 (6)-
0.91 (6) \AA and the $\mathrm{C}-\mathrm{H}$ distances are in the range $0.85(6)-$ 1.04 (3) Å.

For all compounds, data collection: CAD-4-PC Software (EnrafNonius, 1989); cell refinement: CAD-4-PC Software; data reduction: NRCVAX DATRD2 (Le Page \& Gabe, 1979); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996).

We thank the Robert A. Welch Foundation for support of this research including the fellowship granted to HC. We also thank the National Science Foundation for the funds used in purchasing the diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1147). Services for accessing these data are described at the back of the journal.

References

Barefield, E. K., Carrier, A. M. \& VanDerveer, D. G. (1980). Inorg. Chim. Acta, 42, 271-275.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Dori, Z. \& Ziolo, R. F. (1973). Chem. Rev. 73, 247-254.
Druding, L. F. \& Sancilio, F. D. (1974). Acta Cryst. B30, 2386-2389.
Enraf-Nonius (1989). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Le Page, Y. \& Gabe, E. J. (1979). J. Appl. Cryst. 12, 464-466.
Lukaszewski, D. M., Sancilio, F. D. \& Druding, L. F. (1976). Am. Crystallogr. Assoc. Abstr. Papers (Winter), p. 12.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Wieghardt, K., Bossek, U., Nuber, B. \& Weiss, J. (1987). Inorg. Chim. Acta, 126, 39-43.

